120. Triangle
Description
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Constraints
Approach
Links
GeeksforGeeks
Examples
Input:
[
[2],
[3, 4],
[6, 5, 7],
[4, 1, 8, 3]
]
Output: 11
Explanation:

The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Solutions
/**
* Time complexity :
* Space complexity : O(N) where N is the number of rows.
*/
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle == null || triangle.size() == 0) return 0;
int n = triangle.size();
int[] dp = new int[n+1];
for(int i = n-1; i >= 0; i--) {
List<Integer> row = triangle.get(i);
for(int j = 0; j < row.size(); j++) {
dp[j] = row.get(j) + Math.min(dp[j], dp[j+1]);
}
}
return dp[0];
}
}
Follow up
Last updated
Was this helpful?