A sequence of numbers is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
For example, these are arithmetic sequences:
1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
The following sequence is not arithmetic.
1, 1, 2, 5, 7
A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.
A slice (P, Q) of the array A is called arithmetic if the sequence:
A[P], A[P + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.
The function should return the number of arithmetic slices in the array A.
Constraints
Approach
Links
GeeksforGeeks
ProgramCreek
YouTube
Examples
Input: A = [1, 2, 3, 4]
Output: 3
Explanation: 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.
Input: A = [1, 2, 3, 4, 5, 5, 7, 8, 9, 10]
Output: 9
Solutions
/**
* Time complexity : O(n^2), Two for loops are used.
* Space complexity : O(1)
*/
public class Solution {
public int numberOfArithmeticSlices(int[] A) {
int count = 0;
for (int s = 0; s < A.length - 2; s++) {
int d = A[s + 1] - A[s];
for (int e = s + 2; e < A.length; e++) {
if (A[e] - A[e - 1] == d)
count++;
else
break;
}
}
return count;
}
}
/**
* Time complexity : O(n). The recursive function is called at most n-2 times.
* Space complexity : O(n). The depth of the recursion tree goes upto n-2.
*/
public class Solution {
int sum = 0;
public int numberOfArithmeticSlices(int[] A) {
slices(A, A.length - 1);
return sum;
}
public int slices(int[] A, int i) {
if (i < 2)
return 0;
int ap = 0;
if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
ap = 1 + slices(A, i - 1);
sum += ap;
} else
slices(A, i - 1);
return ap;
}
}
/**
* Time complexity : O(n). We traverse over the given A array with n elements once only.
* Space complexity : O(n). 1D dp of size n is used.
*/
public class Solution {
public int numberOfArithmeticSlices(int[] A) {
int[] dp = new int[A.length];
int sum = 0;
for (int i = 2; i < dp.length; i++) {
if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
dp[i] = 1 + dp[i - 1];
sum += dp[i];
}
}
return sum;
}
}
/**
* Time complexity : O(n). We traverse over the given A array with n elements once only.
* Space complexity : O(1). Constant extra space is used.
*/
public class Solution {
public int numberOfArithmeticSlices(int[] A) {
int dp = 0;
int sum = 0;
for (int i = 2; i < A.length; i++) {
if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
dp = 1 + dp;
sum += dp;
} else
dp = 0;
}
return sum;
}
}
/**
* Time complexity : O(n). We iterate over A with n elements exactly once.
* Space complexity : O(1)
*/
class Solution {
public int numberOfArithmeticSlices(int[] A) {
if(A == null || A.length < 3) {
return 0;
}
int n = A.length;
int numOfSlices = 0, count = 0;
for(int i = 0; i+2 < n; i++) {
if(A[i+1]-A[i] == A[i+2]-A[i+1]) {
count++;
} else {
numOfSlices += (count+1)*count/2;
count = 0;
}
}
numOfSlices += (count+1)*count/2;
return numOfSlices;
}
}