823. Binary Trees With Factors
Description
Given an array of unique integers, arr
, where each integer arr[i]
is strictly greater than 1
.
We make a binary tree using these integers, and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of its children.
Return the number of binary trees we can make. The answer may be too large so return the answer modulo 109 + 7
.
Constraints
1 <= arr.length <= 1000
2 <= arr[i] <= 109
Approach
Links
GeeksforGeeks
ProgramCreek
Examples
Input: arr = [2, 4]
Output: 3
Explanation: We can make these trees: [2], [4], [4, 2, 2]
Solutions
/**
* Time complexity : O(N^2), where N is the length of arr.
* This comes from the two for-loops iterating i and j.
* Space complexity : O(N), the space used by map.
*/
class Solution {
public int numFactoredBinaryTrees(int[] arr) {
if(arr == null || arr.length == 0) {
return 0;
}
Arrays.sort(arr);
Map<Integer, Long> map = new HashMap<>();
for(int i = 0; i < arr.length; i++) {
long count = 1;
for(int j = 0; j < i; j++) {
if(arr[i]%arr[j] == 0 && map.containsKey(arr[i]/arr[j])) {
count += map.get(arr[j]) * map.get(arr[i]/arr[j]);
}
}
map.put(arr[i], count);
}
long totalCount = 0;
for(long value: map.values()) {
totalCount += value;
}
return (int) (totalCount % 1000000007);
}
}
Follow up
Last updated
Was this helpful?